Ribosomal elongation cycle: energetic, kinetic and stereochemical aspects.

نویسندگان

  • Valery I Lim
  • James F Curran
  • Maria B Garber
چکیده

As a preface to an analysis of the ribosomal elongation cycle, we examine the energetics of macromolecular structural transformations. We show that the kinetic barriers and changes of the energetic levels during these transformations are essentially determined by disruption of hydrogen and cation-ligand bonds, and by uncompensated losses of these bonds (ULBs). The disruption of a hydrogen or cation-ligand bond increases the heights of kinetic barriers by the energy of these bonds. The association and dissociation of macromolecules, and conformational transitions within macromolecules, can change the numbers of ULBs but cannot completely eliminate them. Two important general conclusions are drawn from this analysis. First, occupation of enzyme active centers by substrates should be accompanied by a reduction in the number of ULBs. This reduction decreases the activation barriers in enzyme reactions, and is a major contributor to catalysis. Second, the enzymic reactions of the ribosomal cycle (structural changes caused by transpeptidation and by GTP hydrolyses in EF-Tu and EF-G) disrupt kinetic traps that prevent tRNAs from dissociating into solution during their motion within the ribosome and are necessary for progression of the cycle. These results are general purpose structural-functional blocks for building a molecular model of the ribosomal elongation cycle. Here, we demonstrate the utility of these blocks for analysis of acceptance of cognate tRNAs into the ribosomal elongation cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed –1 ribosomal frameshifting

Several important viruses including the human immunodeficiency virus type 1 (HIV-1) and the SARS-associated Coronavirus (SARS-CoV) employ programmed -1 ribosomal frameshifting (PRF) for their protein expression. Here, a kinetic framework is developed to describe -1 PRF. The model reveals three kinetic pathways to -1 PRF that yield two possible frameshift products: those incorporating zero frame...

متن کامل

Thermal Degradation Kinetic Study of a Fuel-rich Energetic Mixture Containing Epoxy Binder

      In this work, thermal degradation behavior of a fuel-rich energetic mixture containing epoxy binder was studied by thrmogravimetric analysis and differential scanning calorimetry under dynamic nitrogen atmosphere at different heating rates. Variation of the thermal degradation activation energy of the mixture was evaluated by differential and integral isoconversional methods via ...

متن کامل

Ribosomal stress activates eEF2K–eEF2 pathway causing translation elongation inhibition and recruitment of Terminal Oligopyrimidine (TOP) mRNAs on polysomes

The synthesis of adequate amounts of ribosomes is an essential task for the cell. It is therefore not surprising that regulatory circuits exist to organize the synthesis of ribosomal components. It has been shown that defect in ribosome biogenesis (ribosomal stress) induces apoptosis or cell cycle arrest through activation of the tumor suppressor p53. This mechanism is thought to be implicated ...

متن کامل

مروری بر مواد پرانرژی سازگار با محیط زیست

Since the number of threats originated from chemicals and chemical processes to human health and environment is not negligible, green chemistry has attracted the attention of researchers and scientists. It seems that application of the green chemistry principles in all stages of design energetic materials and production processes, optimizing or disposal of wastes and industrial effluents would ...

متن کامل

Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation.

Determining the mechanism by which tRNAs rapidly and precisely transit through the ribosomal A, P, and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pretranslocation ribosomal co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 351 3  شماره 

صفحات  -

تاریخ انتشار 2005